SOFIA INITIATIVE "MINERAL DIVERSITY PRESERVATION"

VIII International Symposium MINERAL DIVERSITY RESEARCH AND PRESERVATION

СОФИЙСКАЯ ИНИЦИАТИВА "СОХРАНЕНИЕ МИНЕРАЛЬНОГО РАЗНООБРАЗИЯ"

VIII Международный симпозиум МИНЕРАЛЬНОЕ РАЗНООБРАЗИЕ ИССЛЕДОВАНИЕ И СОХРАНЕНИЕ

> EARTH AND MAN NATIONAL MUSEUM 4, Cherny vruh Blvd., 1421 Sofia, Bulgaria 9 - 11 OCTOBER 2015

НАЦИОНАЛЬНЫЙ МУЗЕЙ "ЗЕМЛЯ И ЛЮДИ" бул. "Черни връх" 4, София 1421, Болгария 9 - 11 ОКТЯБРЬ 2015

ПРИРОДНЫЕ ОКСОСОЛИ МЕДИ И МАГНИЯ: ИЗОМОРФИЗМ И УПОРЯДОЧЕНИЕ КАТИОНОВ

АННА Г. ТУРЧКОВА, И.В. ПЕКОВ, Н.В. ЗУБКОВА

Московский государственный университет, Геологический факультет e-mail: annaturchkova@rambler.ru

Резюме. Кристаллохимический анализ структурно изученных природных оксосолей, в которых Си и Мд одновременно находятся в существенных количествах (целые мас.%), проведен с целью выявления закономерностей их распределения в собственных минералах. Обнаружено 15 таких минералов, и все они характеризуются упорядочением Си и Мg, степень которого может быть разной. Характеристики Mg- и Сицентрированных полиэдров сильно различаются. Так, Мд всегда находится в кислородных октаэдрах близкой к правильной формы, с расстояниями Me-O от 1.99 до 2.19 Å, причем разброс расстояний составляет не более 0.17 Å; самое сильное искажение наблюдаются у Мд-октаэдров, где существенна примесь Си. Си-центрированные полиэдры практически во всех случаях вытянуты: четыре коротких связи лежат в интервале от 1.90 до 2.11, а две длинных - от 2.30 до 2.78 Å. Степень искажения Си-октаэдров уменьшается с ростом примеси Mg. В гидроксихлоридах меди и магния крупный анион Cl⁻ входит в координацию только катионов Cu²⁺. Главная причина упорядочения в оксосолях катионов Mg^{2+} и Cu^{2+} – это резко выраженные тенденции к образованию полиэдров разной формы. «Вытягивание» Cu^{2+} -центрированных октаэдров вызвано эффектом Яна-Теллера. Таким образом: (1) смесимость Си и Мд в нешироких пределах (до 5-10 ат.% как Си в позициях Мд, так и наоборот) реализуется легко у представителей многих структурных типов, а у некоторых проявляется и в более широком диапазоне, т.е. для Си-Мд минералов в целом характерно скорее частичное, чем близкое к полному упорядочение этих катионов; (2) в структурах, благоприятствующих реализации сильно искаженных металл-центрированных октаэдров, степень разделения меди и магния возрастает.

Abstract. The crystal chemical analysis of structurally studied natural oxysalts containing both Cu^{2+} and Mg in significant amounts (not less than several wt.%) was made for the determination of regularities of distribution of these cations. Fifteen such minerals are known and in all them Cu and Mg are ordered but degree of the ordering significantly varies. Characteristics of Mg- and Cu-centred polyhedra are quite different. Mg occurs in only oxygen octahedra close to regular in shape, with *Me*-O distances from 1.99 to 2.19 Å and range up to 0.17 Å; Mg octahedra with significant Cu admixture are mostly distorted. The Cu-centred polyhedra are elongated in almost all cases: four short bonds are from 1.90 to 2.11 Å while two long ones are from 2.30 to 2.78 Å. Degree of distortion of Cu-centred octahedron decreases with the increase of admixed Mg content in a Cu site. In Cu-Mg hydroxychlorides, large anions Cl⁻ coordinate only Cu. The major cause of the Cu-Mg ordering in oxysalts is strong tendencies to form polyhedra different in shape. The elongation of Cu²⁺-centred octahedra is caused by the Jahn-Teller effect. Miscibility of Cu and Mg in minor range (up to 5–10 at.% for Cu in the Mg sites, and *vice versa*) realizes easily in representatives of many structural types, *i.e.*, the Cu-Mg minerals in general demonstrate partial rather than close to complete ordering of these cations. In minerals with structures that favour the formation of strongly distorted (elongated) cation-centred octahedra, degree of separation of copper and magnesium is greater.

Магний и двухвалентная медь в минералогии оксосолей традиционно считаются элементами с близкой кристаллохимией: они находятся во многих минералах вместе, причем часто оба в существенных количествах, имеют одинаковый заряд и незначительно различаются по ионным радиусам (Mg^{2+} 0.72 Å, Cu^{2+} 0.73 Å для KЧ = 6: Shannon, 1976). Как следствие, в формулах многих минералов Mg и Cu часто записываются через запятую, что подразумевает их изоморфизм, нахождение в одних и тех же структурных позициях. Между тем, по строению атомов эти металлы существенно различаются, что не может не сказаться на их кристаллохимическом поведении. Нами проведен кристаллохимический анализ структурно изученных природных оксосолей, в которых Cu и Mg одновременно находятся в существенных количествах (целые мас.%), с целью выявления особенностей их распределения в собственных минералах. В таблице приведены 15 таких минералов, из которых три (дравертит, раисаит и феодосиит) недавно открыты и изучены нами, а данные для остальных взяты из литературы.

Из таблицы видно, что все эти минералы, даже те, в формулах которых Си и Mg традиционно записываются через запятую в одних скобках, характеризуются упорядочением этих двух катионов: в их структурах обязательно присутствуют как Cu-, так и Mg-доминантные позиции. Таким образом, и медь, и магний во всех этих минералах оказываются видообразующими. Степень упорядочения этих катионов может быть разной – как практически полной (каллаганит, ниссонит, никенихит, раисаит, тондиит, хейдиит, феодосиит), так и частичной, включая случаи, когда в минерале фиксируются позиции с составом $Cu_{0.6}Mg_{0.4}$ (альперсит) или даже $Cu_{0.5}Mg_{0.5}$ (гуанакоит, у которого, впрочем, другие позиции демонстрируют существенное преобладание Cu или Mg).

Характеристики Mg- и Cu-центрированных полиэдров в рассмотренных минералах сильно различаются. Так, Mg всегда находится в кислородных октаэдрах правильной или близкой к правильной формы, с расстояниями *Me*-O от 1.99 до 2.19 Å, причем разброс расстояний составляет не более 0.17 Å (гуанакоит), обычно же <0.1 Å. Как наименьшие, так и наибольшие расстояния *Me*-O и самое сильное искажение наблюдаются у Mg-октаэдров, где существенна примесь Cu.

Для Си-центрированных полиэдров ситуация принципиально другая. Они практически во всех случаях (единственное исключение – теллурат лейсингит) вытянуты: две «апикальных» связи *Me*-O заметно длиннее четырех других. Короткие связи лежат в интервале от 1.90 до 2.11, а длинные – от 2.30 до 2.78 Å. Максимальный разброс расстояний *Me*-O составляет 0.84 (раисаит), а минимальный – 0.27 Å (альперсит с $Cu_{0.6}Mg_{0.4}$). В арсенатах группы аллюодита – йохиллерите и никенихите – два «апикальных» атома О настолько удалены от атома Cu, что они уже не включаются в его первую координационную сферу, и октаэдр редуцируется до плоского квадрата CuO₄. Степень искажения Cu-доминантных кислородных октаэдров уменьшается с ростом примеси Mg в позициях Cu. В гидроксихлоридах меди и магния крупный анион Cl⁻ входит в координацию только катионов Cu²⁺ (причем доля примесного Mg в таких позициях не превышает 5 ат.%), образуя в разных ситуациях, в зависимости от структурного положения атома хлора, связи с расстояниями Cu-Cl от 2.25 до 3.05 Å, тогда как расстояния Cu-O в этих же полиэдрах лежат в диапазоне от 1.95 до 2.01 Å.

Можно заключить, что главная причина упорядочения в оксосолях катионов Mg²⁺ и Cu²⁺ при их одинаковом заряде, очень близких радиусах и общем стремлении к октаэдрической координации – это резко выраженные тенденции к образованию полиэдров разной формы. Для магния характерны эквидистантные или близкие к таковым октаэдры MgO₆, тогда как медь образует в октаэдрах CuO₆ неэквивалентные связи по схеме [4 коротких + 2 длинных / очень длинных], или же [4 коротких + 1 длинная + 1 очень длинная], вплоть до того, что один или два лиганда O²⁻ могут выходить за пределы первой координационной сферы катиона Cu²⁺, и тогда Си-центрированный октаэдр становится пятивершинником или квадратом. По этой же причине именно для меди, а не для магния, типичны смешанные хлор-кислородные полиэдры CuO_xCl_y, где x+y = 6 или 5. Не вызывает сомнения, что причиной такого кристаллохимического поведения двухвалентной меди является эффект Яна-Теллера, обусловливающий искажение («вытягивание») Си-центрированных октаэдров. По мере «разбавления» меди в ее позициях другими катионами, в нашем случае магнием, влияние этого эффекта ослабевает, и степень искажения октаэдров *MeO*₆ уменьшается. Это хорошо видно из данных, приведенных в таблице. Отметим, что именно тенденции к образованию эквивалентных/неэквивалентных связей Me-O и, соответственно, правильных или искаженных октаэдров накладывают ограничения на изоморфизм в изовалентных парах таких близких по своим характеристикам катионов, как Zr⁴⁺-Ті⁴⁺ и даже Та⁵⁺-Nb⁵⁺: цирконий и тантал формируют близкие к эквидистантным, а титан и ниобий – существенно искаженные октаэдры (Пятенко и др., 1999).

Таким образом, медь и магний, обладая большими различиями в строении атомов, проявляют в природных оксосолях ярко выраженное стремление к разделению даже в пределах одной кристаллической постройки. В то же время, одинаковый заряд и близкие радиусы катионов Mg^{2+} и Cu^{2+} способствуют их изоморфизму. Борьба этих противоположных по направленности тенденций приводит, очевидно, к следующему:

(1) смесимость Cu и Mg в нешироких пределах (до 5–10 ат.% как Cu в позициях Mg, так и наоборот) реализуется легко у представителей многих структурных типов, а у некоторых проявляется и в более широком диапазоне, т.е. для Cu-Mg минералов в целом характерно скорее частичное, чем близкое к полному упорядочение этих катионов. Примеров полного разупорядочения Cu и Mg при их одновременном присутствии в значимых количествах (целые мас. %) среди структурно изученных минералов не обнаружено.

(2) В структурах, благоприятствующих реализации сильно искаженных (вытянутых благодаря эффекту Яна-Теллера) металл-центрированных октаэдров, степень разделения меди и магния возрастает. В частности, этому способствует присутствие крупного аниона Cl⁻, который вместе с O^{2-} входит в координационные полиэдры Cu (но не Mg). Подчеркнем и в целом сродство медных оксосолей к хлору: ян-теллеровское искажение смешанных полиэдров CuO_xCl_y осуществляется легче благодаря разнице в размерах между Cl⁻ и O²⁻.

(3) Зависимости степени смесимости Cu и Mg от того, координирован катион лигандами $O^{2^{-}}$, OH или H_2O^0 , не обнаружено.

Таблица. Характеристика Cu- и Mg-центрированных полиэдров в структурно изученных природных оксосолях, одновременно содержащих видообразующие катионы Cu²⁺ и Mg.

природных оксосолях, одновременно содержащих видоооразующие катионы Си и Мg.		
Минерал, литератур. ссылка	Си-центрированные полиэдры:	Mg-центрированные полиэдры:
Формула, простр. группа	катионный состав и расстояния	катионный состав и расстояния
	металл–лиганд (Å)	металл–лиганд (Å)
Дравертит (IMA2014-104)*	CuO ₆ [1.91–2.02 x 4 & 2.59 x 2]	$(Mg_{0.65}Cu_{0.25}Zn_{0.10})O_{6}[1.99 - 2.14]$
$CuMg(SO_4)_2 P2_1/n$		x 6]
"Си-кизерит" [1]	$(Cu_{0.88}Mg_{0.12})O_6 [1.96-1.98 \times 4 \& 2.48]$	$(Mg_{0.86}Cu_{0.14})O_{6}[2.00-2.08 \times 6]$
"(Cu.Mg)SO ₄ ·H ₂ O" =	x 2]	(2 0.00 - 0.14) - 0 [· · · · · · ·]
$CuMg(SO_4)_2 \cdot 2H_2O = P-1$]	
"Мо-халькантит" [2]	(1) $(Cu_0 M g_0) O_c [2 05 - 2 07 x 4 \&$	$(1) (Mg_{0,7}Cu_{0,2}) O_{c} [2 \ 10-2 \ 18 \ x \ 6]$
$\frac{1}{2} \frac{1}{2} \frac{1}$	$2.05 \times 2.07 \times 100$	$(1) (Mg_0 - Cu_{0.3}) O_6 [2.10 2.10 x 0]$ (2) $(Mg_0 - Cu_{0.3}) O_6 [2.13 - 2.17 x 6]$
$CuMg(SO_4) \approx 10H_2O_2P_1$	$(2) (Cu_{2} M \sigma_{2}) O_{1} [2 0 A_{2} 0 9 x 4 \&$	$(2) (WIg_{0.7} Cu_{0.3}) O_6 [2.15 2.17 \times 0]$
Culling(504)2 101120 1 -1	$(2) (Cu_{0.9}(v_{1}g_{0.1})) = (2.0 + 2.0) \times 4 \times 10^{-2}$	
	$\begin{bmatrix} 2.31 \times 2 \end{bmatrix}$	$(1) (M_{\alpha} - C_{\mu})) 0 [2.05, 2.12] x$
$\begin{array}{c} \text{Альперси1} [2] \\ \text{"(Ma Cu)SO} \text{7U O"} = \end{array}$	$1) (Cu_{0.60} Wig_{0.40}) O_6 [2.01-2.05 \times 4 \propto 12.20 \times 21]$	(1) (WIg _{0.96} Cu _{0.04})O ₆ [2.03–2.12 X
$(Mg,Cu)SO_4^{-1}/\Pi_2O^{-1}$	$\begin{bmatrix} 2.50 \times 2 \end{bmatrix}$	(0) (M ₂ C ₁) (0 [2.05, 2.12])
$CuNg(SO_4)_2 \cdot 14H_2O_P 2_1/C$	$(2) (Cu_{0.74}Mg_{0.26})O_6 [1.99-2.02 \times 4 \&$	(2) $(Mg_{0.85}Cu_{0.15})O_6$ [2.05–2.13 X
	2.33 X 2]	6
Каллаганит [3]	$CuO_5 [1.93-1.96 \times 4 \& 2.49]$	$MgO_6 [2.06-2.12 \times 6]$
$Cu_2Mg_2(CO_3)(OH)_6 \cdot 2H_2O C2/c$		
Ниссонит [4]	CuO ₆ [1.94–2.02 x 4 & 2.36 & 2.66]	MgO ₆ [2.05–2.12 x 6]
$Cu_2Mg_2(PO_4)_2(OH)_2 \cdot 5H_2O$		
C2/c		
Йохиллерит [5,6]	$(1) CuO_4 [1.92 - 1.95]$	$(1) (Mg_{0.88}Zn_{0.12})O_6 [2.06-2.17 x]$
NaMg ₃ Cu(AsO ₄) ₃ $C2/c$		6]; $(Mg_{0.88}Zn_{0.12})O_6$ [2.01–2.12 x
	$(2) CuO_4 [1.91 - 1.94]$	6]
		(2) (Mg _{0.70} Cu _{0.21})O ₆ [2.08–2.15 x
		6]: $(Mg_{0.65}Cu_{0.20}Fe_{0.15})O_{6}[2.00-$
		2.13 x 6]
Никенихит [7]	$C_{11}O_{4}$ [1 90– 1 99]	$(Mg_{0.00}Fe_{0.12})O_{c}[2.10-2.12 \times 6]^{-2}$
$(N_{2} [1)([1 C_{2})([1 C_{1})M_{2}(A_{2} C_{1})))$		$(Mg_{0.89}Fe_{0.12}) \odot_{6} [2.10 \ 2.12 \ \text{k} \ 0],$
C^{2}/c		$\left(101g_{0.781} + c_{0.22}\right) = \left[1.55 + 2.16 \times 6\right]$
	(1) CuO [1 04 2 03 x 4 & 2 34 &	$(1) (M_{\sigma} - C_{\mu})) \cap [2 02 2 19 x]$
Γ yanakowi [0,7] Cu (Mg Cu)Mg (AsO) (OH)	$(1) CuO_6 [1.94-2.05 \times 4 \otimes 2.54 \otimes 2.60]$	$(1) (Mg_{0.50}Cu_{0.50})O_6 [2.02-2.19 X]$
$Cu_2(NIg,Cu)NIg_2(ASO_4)_2(OII)_4$	$\begin{bmatrix} 2.07 \end{bmatrix}$ (2) (Cy Ma)O [1.02, 2.03 x 4.8;	0 , $(\text{WI}g_{0.96}\text{Cu}_{0.04})O_6$ [2.03–2.18 x
$^{14}\Pi_{2}O F Z_{1}/C$	$(2) (Cu_{0.85} v_{1}g_{0.15}) O_6 [1.93-2.05 \times 4 \&$	$(2) (M_{2} - C_{1})) (12.04 - 2.12 + 1)$
	$2.32 \approx 2.74$	(2) $(Mg_{0.83}Cu_{0.17})O_6 [2.04-2.12 X]$
	(C, M,) $(C, M,)$	0; MgO ₆ [2.02–2.17 X 0]
$\begin{bmatrix} JIEUCUHFUT & [10] \\ C & (M - E) & T & (H - C) \\ C & (H - E) & T & (H - C) \\ C & (H - E) & T & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - E) & (H - C) & (H - C) \\ C & (H - C) & (H - C) \\ C & (H - C$	$(Cu_{0.89}Mg_{0.11})O_6[2.11 \times 6]$	$(Mg_{0.54}Fe_{0.46})O_6 [2.02 \times 6]$
$Cu_2(Mg,Fe)$ le $O_6 \cdot 6H_2O$		
<i>P-31m</i>		
Раисаит (IMA2014-046)*	$(Cu_{0.95}Mg_{0.05})O_6$ [1.94–1.98 x 4 & 2.78	$MgO_6 [2.08-2.10 \times 6]$
$CuMg[Te^{O}O_4(OH)_2] \cdot 6H_2O$	x 2]	
C2/c		
Тондиит [11]	CuO ₄ Cl ₂ [1.99 x 4 & 2.77 x 2]	$(Mg_{0.7}Cu_{0.3})O_6 [2.10 \times 6]$
$Cu_3Mg(OH)_6Cl_2 R-3m$		
Паратакамит-(Mg) [12]	CuO ₄ Cl ₂ [1.99 x 4 & 2.77–2.78 x 2];	$(Mg_{0.63}Cu_{0.37})O_6$ [2.10 x 6];
$Cu_3Mg(OH)_6Cl_2$ R-3	CuO_4Cl_2 [1.99 x 4 & 2.78 x 2]	$(Mg_{0.63}Cu_{0.37})O_6$ [2.07–2.14 x 6]
Хейдиит [13]	CuO_4Cl_2 [1.98 x 4 & 2.77 x 2]	MgO ₆ [2.11 x 6]
$Cu_3Mg(OH)_6Cl_2 P-3m1$		
Феолосиит (IMA2015-063)*	$(C_{110,07}Mg_{0,02})O_{2}C_{14}[2,00 \times 2,\&2,31 \times 10^{-1}]$	MgO ₆ [2 01–2 08 x 6]
$C_{111}Mg_{2}C_{110}(OH)_{\bullet}$	$2 \& 2 79 x 2] (Cu_{0.07}Mg_{0.02})O_2Cl_4$	
$P_{2,1/c}$	$[195 \times 2.\% 232 - 233 \times 2\% 278\%$	
	$3 05]$ (Clloor Mg on)O_CL [2 00_2 01 v	
	$2 \ x^2 \ y^2 \ $	
	$(C_{110} \circ T_{10}M_{00} \circ n) \cap C_{10} [1 \ 07 \ 2 \ 01 \ v \ 2 \ r_{10}$	
	$(\bigcirc u_{0.971}v_{180.03})\bigcirc (\bigcirc u_{1.77}) = 2.01 \times 5 \&$	
	$\begin{bmatrix} 2.27 & 2.07 & 2.07 \\ (C_{\rm H} & M_{\rm C} &) \\ O & C_{\rm H} & [1 \ 07 \ 2 \ 00 \ \text{w} \ 2 \ \text{e} \end{bmatrix}$	
	$(U_{0.97}, V_{15}, U_{0.03}, U_{3}, U_{3}, U_{13}, U$	
	$\begin{bmatrix} 2.24 & 2.73 & 2.00 \end{bmatrix};$	
	$(U_{0.97}W_{18})U_{2}U_{3}$ [2.00 X 2 & 2.26 X	
	2 & 2.65	

* наши данные. Источники: [1] Lengauer and Giester, 1995; [2] Peterson et al., 2006; [3] Brunton, 1973; [4] Groat and Hawthorne, 1990; [5] Keller and Hess, 1988; [6] Tait and Hawthorne, 2004; [7] Auernhammer et al., 1993; [8] Witzke et al., 2006; [9] Kyono, 2008; [10] Margison et al., 1997; [11] Malcherek et al., 2014; [12] Kampf et al., 2013; [13] Malcherek and Schlüter, 2007. Степень упорядочения/разупорядочения Cu и Mg в природных оксосолях, вероятно, зависит в заметно большей мере от структурных особенностей минералов, чем от условий их образования, в частности, температуры. Так, и в зоне окисления рудных месторождений, и в возгонах горячих (>400°C) фумарол вулкана Толбачик (Камчатка, Россия) встречаются минералы как с практически полностью упорядоченным распределением Cu и Mg, так и с частично разупорядоченным. Например, дравертит и йохиллерит в фумарольных эксгаляциях Толбачика бывают представлены как стехиометричными образцами, близкими по составу, соответственно, к CuMg(SO₄)₂ и NaMg₃Cu(AsO₄)₃, так и высокомедистыми разновидностями: у дравертита состав доходит до Cu_{1.3}Mg_{0.6}Zn_{0.1}(SO₄)₂, а йохиллерит может образовывать практически полный изоморфный ряд с брадачекитом NaCu₄(AsO₄)₃. В то же время, представленные в таблице образцы гуанакоита, альперсита и «Mg-халькантита», в которых присутствуют позиции Cu с большой примесью Mg, и наоборот (вплоть до равных содержаний этих компонентов), происходят из гипергенных минеральных ассоциаций.

В заключение отметим, что упрощенные формулы некоторых Cu-Mg минералов, как показал наш анализ структурных данных, фигурируют в литературе в не вполне корректном виде, находясь в противоречии с реальными особенностями кристаллохимии. В первую очередь это касается купоросов – альперсита, промежуточных членов ряда халькантит-пентагидрит и «Сикизерита». для которых формулы обычно приводятся такими: $(Mg,Cu)SO_4 \cdot 7H_2O_1$ $[(Cu,Mg)SO_4 \cdot 5H_2O - (Mg,Cu)SO_4 \cdot 5H_2O]$ и (Cu,Mg)SO₄ · H₂O, соответственно. Как показывают структурные расшифровки, во всех трех случаях Си и Мд существенно упорядочены, и корректные идеализированные формулы этих минералов должны быть записаны, соответственно: CuMg(SO₄)₂·14H₂O, CuMg(SO₄)₂·10H₂O и CuMg(SO₄)₂·2H₂O (табл.). Таким образом, формула альперсита нуждается в уточнении, а промежуточный член ряда халькантитпентагидрит и «Си-кизерит» представляют собой, по сути, потенциально новые минеральные виды – Cu-Mg упорядоченные водные сульфаты, соотносящиеся с чисто медными и чисто магниевыми конечными членами соответствующих рядов твердых растворов так же, как, например, доломит $CaMg(CO_3)_2$ с кальцитом $CaCO_3$ и магнезитом $MgCO_3$.

Работа выполнена при поддержке РФФИ, грант 14-05-00276-а.

ЛИТЕРАТУРА

Пятенко Ю.А., Курова Т.А., Черницова Н.М., Пудовкина З.В., Блинов В.А., Максимова Н.В. (1999): Ниобий, тантал и цирконий в минералах. М., Изд. ИМГРЭ, 213 с.

Auernhammer M., Effenberger H., Hentschel G., Reinecke T., Tillmanns E. (1993): Nickenichite, a new arsenate from the Eifel, Germany. Mineralogy and Petrology, 48, 153-166.

Brunton G. (1973): Refinement of the callaghanite structure // American Mineralogist, 58, 965-965.

Groat L.A., Hawthorne F.C. (1990): The crystal structure of nissonite // American Mineralogist, 75, 1170-1175.

Kampf A.R., Sciberras M.J., Leverett P., Williams P.A., Malcherek T., Schlüter J., Welch M.D., Dini M., Molina Donoso A.A. (2013): Paratacamite-(Mg), Cu₃(Mg,Cu)Cl₂(OH)₆; a new substituted basic copper chloride mineral from Camerones, Chile // Mineralogical Magazine, 77(8), 3113-3124.

Keller P. and Hess H. (1988): Die Kristallstrukturen von O'Danielit, Na(Zn,Mg)₃H₂(AsO₄)₃ und Johillerit, Na(Mg,Zn)₃Cu(AsO4)₃ // N. Jb. Mineral. Mh., 395-404.

Kyono A. (2008): Compositional variability and crystal structural features of guanacoite // American Mineralogist, 93, 501-507.

Lengauer C.L. and Giester G. (1995): Rietveld refinement of the solid-solution series: (Cu,Mg)SO₄·H2O // Powder Diffraction, 10(3), 189-194.

Malcherek T., Bindi L., Dini M., Ghiara M.R., Molina Donoso A., Nestola F., Rossi M., Schlüter J. (2014): Tondiite, Cu₃Mg(OH)₆Cl₂, the Mg-analogue of herbertsmithite // Mineralogical Magazine, 78(3), 583–590.

Malcherek T. and Schlüter J. (2007): Cu₃MgCl₂(OH)₆ and the bond-valence parameters of the O H - Cl bond // Acta Crystallographica B, 63, 157-160.

Margison S.M., Grice J.D., Groat L.A. (1997): The crystal structure of leisingite, $(Cu^{2+},Mg,Zn)_2(Mg,Fe)Te^{6+}O_6\cdot 6H_2O$ // Canadian Mineralogist, **35**, 759-763.

Peterson R.C., Hammarstrom J.M., Seal R.R. II (2006): Alpersite (Mg,Cu)SO₄·7H₂O, a new mineral of the melanterite group, and cuprian pentahydrite: Their occurrence within mine waste // American Mineralogist, **91**(2-3), 261-269.

Shannon R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crvst., A32, 751-767.

Tait K.T. and Hawthorne F.C. (2004): Johillerite from Tolbachik, Kamchatka peninsula, Russia: crystal-

structure refinement and chemical composition // Canadian Mineralogist, 42, 717-722.

Witzke T., Kolitsch U., Krause W., Wiechowski A., Medenbach O., Kampf A.R., Steele I.M., Favreau G. (2006): Guanacoite, $Cu_2Mg_2(Mg_0 \ _5Cu_0 \ _5)(OH)_4(H_2O)_4(AsO_4)_2$, a new arsenate mineral species from the El Guanaco Mine, near Taltal, Chile: Description and crystal structure // European Journal of Mineralogy, 18, 813-821.