= ГЕОХИМИЯ =

УДК 550.4

СВИДЕТЕЛЬСТВО НАДСУБДУКЦИОННОЙ ПРИРОДЫ МАНТИЙНЫХ ПОРОД ВОЙКАРО-СЫНЬИНСКОГО ОФИОЛИТОВОГО МАССИВА, ПОЛЯРНЫЙ УРАЛ

© 2009 г. И. А. Белоусов, В. Г. Батанова, Г. Н. Савельева, член-корреспондент РАН А. В. Соболев

Поступило 08.06.2009 г.

Определение геодинамических обстановок, в которых формировались мантийные разрезы офиолитовых комплексов, является важной проблемой геологии. Ее решение не может быть простым следствием реконструкции обстановок образования коровых частей офиолитовых разрезов из-за их возможного тектонического совмещения с мантийным основанием. Прямым способом установления происхождения последнего может быть анализ содержаний несовместимых элементов-примесей в клинопироксене и/или амфиболе из мантийных пород. Этот подход позволяет оценить геохимическую специфику мантийных расплавов, мигрирующих через перидотиты, и определить геодинамическую обстановку их образования. В настоящей работе публикуются первые данные по составу клинопироксена и амфибола из жильных пироксенитов мантийных частей разреза Войкаро-Сыньинского массива, Полярный Урал, доказывающие их надсубдукционное происхожление.

Войкаро-Сыньинский офиолитовый массив входит в состав крупнейшего в мире пояса мафит-ультрамафитовых пород протяженностью около 400 км [1]. Массив хорошо изучен: расшифрована его внутренняя структура, даны характеристики слагающих его пород. Породы офиолитовой ассоциации Полярного Урала рассматриваются как гигантские фрагменты мантии и коры океанического типа, сформированные в задуговых окраинных бассейнах в надсубдукционной обстановке [1–3]. Принадлежность к надсубдукционной обстановке была установлена как для плагиогранитов [1, 4], так и для пород расслоенного и дайкового комплексов Вой-

Институт геохимии и аналитической химии им. В.И. Вернадского Российской Академии наук, Москва Геологический институт Российской Академии наук, Москва Институт химии им. М. Планка, Майнц, Германия каро-Сыньинского массива [6]. Однако для гарцбургитов, дунитов и жильных пироксенитов мантийных частей разреза этого массива на основе Nd—Sm-изотопных данных предполагалось их образование из мантии, отвечающей по составу источнику базальтов срединно-океанических хребтов (COX) [7]. Наши новые данные позволяют прийти к другому выводу.

Исследования мантийных пород проводились нами в северной части массива, где мощность перидотитовых разрезов достигает 6 км. Среди пород преобладают гарцбургиты с разной степенью обеднения базальтовым компонентом. Дуниты составляют около 20% площади перидотитов и представляют собой следы каналов, по которым под действием стресса при подъеме вмещающих гарцбургитов мигрировали мантийные расплавы [3]. С дунитами пространственно ассоциируют жилы пироксенитов. Дуниты и пироксениты формировались внутри разреза гарцбургитов на заключительном этапе магматического развития мантийного разреза [3]. Пироксениты были детально изучены и опробованы в районах междуречья Хойла–Левая Пайера и р. Лагорта.

Форма и размеры пироксенитовых жил в гарцбургитах отличаются большим разнообразием. Наиболее ранние генерации пироксенитов, секущих дуниты, представлены жилами диопсид-энстатититового состава мощностью от 1-2 до 50 см. Тонкие жилы диопсидитов распространены в дунитах и иногда замещают по простиранию дунитовые жилы. Зональные жилы темно-зеленых вебстеритов являются самыми поздними. Жилы гигантозернистых пироксенитов мощностью 0.5-2.5 м образуют рои, прослеживающиеся на расстояние до 3 км от крупного дунитового тела. Большинство пород характеризуется крупнозернистыми и гигантозернистыми структурами и имеют реакционные контакты с вмещающими гарцбургитами. Модальный состав пород сильно варьирует. Вместе с клино- и ортопироксенами (Cpx, Opx) во многих пироксенитах присутствует магматический высокоглиноземистый амфибол (Amf).

Анализ состава Срх и Amf проводился в Институте химии им. М. Планка. Содержание главных компонентов измеряли на электронном микроанализаторе Jeol Jxa-8200. Определение содержаний элементов-примесей проводилось методом LA ICP-MS на приборе Thermo Finnigan Element 2 с лазерной приставкой New Wave UP213. Диаметр лазерного пучка составлял 80 мкм. В качестве газа – переносчика из лазерной приставки в масс-спектрометр использовался гелий. Анализ фона длился 20 с, а самого образца – 80–100 с. В качестве стандартов использовались стекла KL2-G и NIST 612 [8].

Клинопироксен по составу отвечает диопсидам, содержание CaO в них варьирует в пределах 22–24.5 мас. %, Al_2O_3 1–4 мас. %, Cr_2O_3 0.2– 1.3 mac. %, $Mg^{\#}$ (100(Mg/Mg+Fe²⁺)) 89–94.5 (табл. 1). По содержанию элементов-примесей Срх из различных жил показывает широкий интервал составов (табл. 1, рис. 1а). Спектры распределения несовместимых элементов субпараллельны и характеризуются высокими содержаниями легких редкоземельных элементов (ЛРЗЭ) и Sr при относительно низких содержаниях тяжелых РЗЭ. Похожие спектры распределения несовместимых элементов наблюдаются во вкраплениях Срх из бонинитов верхних подушечных лав и из пироксенитовых жил массива Троодос (о. Кипр), являющегося типичным представителем офиолитов, сформированных над зоной субдукции [9]. Интервал составов Срх пироксенитов полностью перекрывает таковой для Срх из пород расслоенного комплекса [6] (рис. 1а).

Амфибол по составу отвечает высокотемпературной паргаситовой роговой обманке (~10–12%) Al_2O_3) (табл. 1). Присутствие магматического Amf свидетельствует о повышенном содержании воды в расплаве (флюиде). По содержанию несовместимых элементов-примесей Amf подразделяются на две группы (рис. 16). Amf I группы попадают в область составов, характерных для амфиболов из зон субдукции [10]. Amf II группы сильно обеднены средними и легкими РЗЭ относительно первой. Для Amf обеих групп характерно сильное обогащение крупноионными литофильными элементами (КИЛЭ) – Rb, Ba, Sr по сравнению с высокозарядными элементами (ВЗЭ) – Nb, Zr. Кроме того, Amf II группы характеризуются высоким содержанием Рь относительно La и Ce. Как показано на рис. 1в, спектры распределения несовместимых элементов-примесей для Amf и Cpx из одного образца параллельны друг другу для всех элементов (I группа) или для элементов, расположенных правее Се (II группа), а их содержания в Amf в 3–5 раз выше, чем в Срх. Параллельный характер спектров распределения несовместимых элементов в сосуществующих Срх и Amf свидетельствует о том, что эти минералы являются равновесными и их окончательное формирование из расплава происходило одновременно.

На основе коэффициентов распределения (K_d) минерал/расплав рассчитаны составы расплавов, равновесные с Amf и Cpx. Для Cpx использовались K_d , полученные для бонинитов Троодоса (табл. 1) [11]. Наличие реакционных соотношений между гарцбургитами и жильными пироксенитами свидетельствует о повышенном содержании SiO₂ в расплавах [12]. Поэтому для расчета использованы K_d Amf/расплав, отвечающие следующим условиям: содержание SiO₂ в расплаве 55–65 мас. %, P = 1.5 ГПа, $T = 1000^{\circ}$ С [13].

Поля оцененных составов расплавов показаны на рис. 2. Расплавы, рассчитанные на основе Срх (рис. 2а), образуют широкое поле параллельных спектров, наиболее обогащенные из которых характеризуются высоким содержанием Sr и низкими содержаниями средних РЗЭ и ВЗЭ по сравнению с базальтами СОХ [14]. Разности, располагающиеся в наиболее обедненной части поля, более обеднены средними и тяжелыми РЗЭ, чем сверхобедненные расплавы, образующиеся при 17% плавления мантийного источника СОХ [15]. В то же время они демонстрируют обогащение легкими РЗЭ и Sr относительно последних. Весь спектр составов расплавов мог быть сформирован при прогрессивном плавлении обедненного мантийного источника в условиях привноса флюидного компонента, обогащенного КИЛЭ и, в меньшей степени, легкими РЗЭ.

Расплавы, рассчитанные на основании составов Amf, образуют две группы (рис. 2). Нормализованные к составу примитивной мантии спектры распределения элементов-примесей обеих групп имеют четко выраженные Nb-минимум и Pb-максимум (рис. 2б). Первая группа составов соответствует расплавам бонинитового состава [14]. Вторая группа является сверхобедненной по содержанию легких и средних РЗЭ, но характеризуется значительным обогащением Rb, Ba, Sr и Pb. По характеру спектров распределения эти расплавы близки к группе наиболее обедненных из примитивных расплавов высококальциевых бонинитов Троодоса [9].

Примечательно, что две группы составов расплавов, равновесных с Срх из пород расслоенного комплекса Войкаро-Сыньинского массива [6], попадают в поле изученных расплавов, что подвергает сомнению выводы указанных авторов об

БЕЛОУСОВ и др.

	pu07 4/3	pu07 10/2	pu07 30	pu07 31/3	pu07 55/10	pu07 33/1	pu07 10/2	pu07 55/10	$K_d \operatorname{Amf/l}$	$K_d \operatorname{Cpx/l}$
Компо- нент	Cpxt	Web	Web	Web	Web	Web	Web	Web		
	Amf	Amf	Amf	Amf	Amf	Amf	Срх	Срх		
SiO ₂	48.53	46.31	46.23	47.42	49.74	49.57	52.18	53.05		
Na ₂ O	1.46	1.90	1.52	1.69	0.94	1.55	0.26	0.08		
CaO	12.60	12.43	12.01	11.91	13.22	12.02	23.60	23.97		
K ₂ O	0.06	0.07	0.18	0.19	0.04	0.15	Н.п.о.	Н.п.о.		
FeO	5.64	4.90	4.57	4.57	3.72	4.09	3.00	2.64		
MgO	18.51	17.83	18.18	18.93	18.91	19.69	16.36	16.91		
Al_2O_3	9.88	11.67	13.93	12.14	10.22	9.02	2.99	3.01		
TiO ₂	0.33	0.54	0.23	0.11	0.18	0.10	0.18	0.07		
Cr ₂ O ₃	0.37	1.89	0.42	0.21	0.87	0.37	0.98	0.36		
MnO	0.07	0.07	0.07	0.08	0.04	0.08	0.09	0.08		
NiO	0.10	0.07	0.13	0.10	0.11	0.09	0.03	0.05		
Сумма	97.54	97.66	97.46	97.36	97.99	96.64	99.67	100.22		
Mg [#]	85.40	86.64	87.64	88.08	90.06	89.57	90.67	91.95		
Rb	1.42	2.15	0.74	0.80	0.59	0.78	0.016	Н.п.о.	0.14	
Ba	12.65	20.47	2.80	2.23	0.59	3.77	0.94	»	0.23	
Nb	0.034	0.048	0.018	0.025	0.020	0.031	0.007	»	0.3	
La	0.45	0.56	0.005	0.005	Н.п.о.	0.018	0.102	»	0.2	0.032
Pb	0.15	0.42	0.41	0.38	0.12	0.57	0.087	0.027	0.15	0.01
Ce	1.97	2.63	0.024	0.027	0.014	0.072	0.54	0.006	0.4	0.057
Sr	48.56	44.28	5.14	3.20	2.68	6.32	12.38	0.74	0.3	0.082
Pr	0.42	0.62	0.006	0.008	0.005	0.015	0.126	Н.п.о.	0.277	0.1
Nd	2.74	4.02	0.073	0.068	0.067	0.099	0.817	0.021	0.8	0.129
Zr	7.79	8.38	0.24	0.28	0.25	0.60	2.45	0.08	0.4	0.046
Hf	0.33	0.30	0.019	0.020	0.028	0.030	0.106	Н.п.о.	0.7	
Sm	1.23	1.89	0.065	0.048	0.115	0.067	0.403	0.032	1.7	0.211
Eu	0.41	0.79	0.033	0.022	0.043	0.027	0.172	0.018	1.3	0.35
Gd	1.62	2.82	0.23	0.14	0.37	0.17	0.63	0.14	1.7	0.3
Ti	1824	3283	1326	670	1099	615	989	336	2.94	0.229
Tb	0.27	0.49	0.069	0.040	0.117	0.046	0.117	0.040	2	0.3
Dy	1.77	3.47	0.75	0.41	1.11	0.45	0.82	0.36	2	0.256
Но	0.35	0.73	0.23	0.12	0.32	0.13	0.18	0.09	2	0.25
Y	10.04	20.73	6.07	3.47	8.59	3.46	4.47	2.26	2.3	0.245
Er	1.10	2.27	0.85	0.47	1.15	0.48	0.50	0.30	2.12	0.259
Tm	0.15	0.30	0.15	0.09	0.18	0.08	0.07	0.05	2	0.25
Yb	1.08	1.97	1.14	0.73	1.43	0.65	0.42	0.35	1.63	0.214
Lu	0.17	0.30	0.19	0.12	0.23	0.11	0.06	0.06	1.5	0.2

Таблица 1. Представительные анализы амфибола и клинопироксена из пироксенитов мантийного разреза Вой-каро-Сыньинского массива

Примечание. Срхт – клинопироксенит, Web – вебстерит, Amf – амфибол, Срх – клинопироксен, *K*_d Amf/l – коэффициенты распределения амфибол–расплав, *K*_d Cpx/l – коэффициенты распределения клинопироксен–расплав. Содержания главных компонентов – мас. %, элементов-примесей – г/т; Н.п.о. – ниже предела обнаружения.

Рис. 1. Спектры распределения редких элементов, нормированные к составу примитивной мантии (ПМ) [5], для клинопироксенов (а) и амфиболов (б) из жильных пироксенитов мантийного разреза Войкаро-Сыньинского массива, а также сравнение составов клинопироксена и амфибола из одного образца (в). Для сравнения показаны: а – составы клинопироксенов из бонинитов и пироксенитов мантийного разреза офиолитов Троодоса и поля составов клинопироксенов из расслоенного комплекса Войкаро-Сыньинского массива [6]; б – поле составов амфиболов из ксенолитов вулкана Авача [10] и поле всех опубликованных составов амфиболов из мантийных пород островодужных обстановок (http://georoc.mpch-mainz.gwdg.de/georoc/).

7 ДОКЛАДЫ АКАДЕМИИ НАУК том 429 № 2 2009

Рис. 2. Расчетные содержания редких элементов, нормированные к составу примитивной мантии [5], в расплавах, равновесных с клинопироксенами (а) и амфиболами (б) из жильных пироксенитов мантийного разреза Войкаро-Сыньинского массива. Для сравнения показаны средние составы базальтов СОХ, островодужных базальтов и бонинитов из [14], а также состав сверхобедненного расплавного включения из [15] и поле наиболее обедненных из примитивных расплавов высококальциевых бонинитов Троодоса [9].

образовании этих групп в разных геодинамических обстановках.

Таким образом, в образовании пироксенитов участвовали расплавы, в которых содержание несовместимых элементов указывает на их формирование при прогрессивном плавлении мантийного клина над зоной субдукции. Следовательно, мантийный разрез Войкаро-Сыньинского массива может представлять верхние области мантии над зоной субдукции.

Работа выполнена при финансовой поддержке РФФИ (гранты 09–05–01165, 09–05–01193 и 08– 05–00151) и Федерального агентства по науке и инновациям – Ведущие научные школы НШ-150.2008.5.

СПИСОК ЛИТЕРАТУРЫ

- Савельева Г.Н. Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре. М.: Наука, 1987. 246 с.
- 2. Добрецов Н.Л., Молдованцев Ю.Е., Кодак А.П. и др. Петрология и метаморфизм древних офиолитов (на примере Полярного Урала и Западного Саяна). Новосибирск: Наука, 1977. 220 с.
- 3. Савельева Г.Н., Соболев А.В., Батанова В.Г. и др. // Геотектоника. 2008. № 6. С. 1–12.
- 4. Савельев А.А. // Геотектоника. 1996. № 3. С. 25-35.
- Hofmann A.W. // Earth and Planet. Sci. Lett. 1988. V. 90. P. 297–314.
- 6. Pertsev A.N., Savelieva G.N., Simakin S.G. // Ofioliti. 2003. № 28. P. 33–41.

ДОКЛАДЫ АКАДЕМИИ НАУК том 429 № 2 2009

- 7. Sharma M., Wasserburg G.J., Papanastassiou D.A. et al. // Earth and Planet. Sci. Lett. 1995. V. 135. P. 101–114.
- 8. Jochum K.P., Dingwell D.B., Rocholl A. et al. // Geostandards Newslet. J. Geostandards and Geoanal. 2000. V. 24. № 1. P. 87–133.
- 9. Соболев А.В., Портнягин М.В., Дмитриев Л.В. и др. // Петрология. 1993. Т. 1. № 4. С. 379-412.
- Ishimaru S., Arai S. In: Metasomatism in Oceanic and Continental Lithospheric Mantle. L.: Geol. Soc. Spec. publ. 2008. P. 35–55.
- 11. Соболев А.В., Мигдисов А.А., Портнягин М.В. // Петрология. 1996. Т. 4. № 3. С. 326-336.
- 12. Sobolev A.V., Hofmann A.W., Sobolev S.V. et al. // Nature. 2005. V. 434. № 7033. P. 590–597.
- 13. *Tiepolo M., Oberti R., Zanetti A. et al.* // Rev. Miner. and Geochem. 2007. V. 67. P. 417–452.
- 14. *Kelemen P., Hanghoi K., Green A.R.* In: Treatise on Geochemistry. Amsterdam: Elsevier, 2004. P. 593–659.
- 15. Соболев А.В., Шимизу Н. // ДАН. 1992. Т. 326. № 3. С. 354–360.