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ABSTRACT 

The development of high energy physics and chemistry leads to a necessity of 
seeking and employing many-particle relativistic equations. A goal of this paper is to 
suggest some relativistic models and to give methods of their solving for heavy atoms. 

A new relativistic approach in the theory of heavy atoms has been suggested in 
momentum representation.  

The method is in diagonalization of the kinematic c–momentum matrix and 
obtaining an integral equation system for many atomic electrons both in Clifford algebra 
of the Dirac-Pauli matrices, and in hypercomplex (quaternionic) algebra.  

A scalar relativistic equation as an approximation to the equation system has been 
suggested, which takes into account the spin-relativistic kinematics of atomic electrons.  
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AIM AND BACKGROUND 

The development of high energy physics and chemistry leads to a necessity of seeking for 
and employing many-particle relativistic equations.  

A goal of this paper is to propose some relativistic models and to give methods of their 
solving for heavy atoms.  

A new relativistic approach in the theory of heavy atoms has been suggested in 
momentum representation.  

A scalar relativistic equation as an approximation to the equation system has been 
suggested, with taking into account the spin-relativistic kinematics of atomic electrons. 
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INTRODUCTION 

The problem of studies on the electronic structure of heavy atoms faces with some 
theoretical difficulties in describing physical behavior of many-particle system in accordance 
with the relativity theory. Spectroscopy of heavy atoms has got a large massive of data that 
needs in proper interpretation on the base of relativistic theoretical models. So far there do not 
exist many-electron relativistic approaches for Coulombic systems, from which one could 
obtain approximations (even Hartree-Fock models) for the purpose of systematical study in 
the field of atomic and molecular spectroscopy and quantum chemistry. The development of 
high energy physics and chemistry leads to a necessity of seeking and employing many-
particle relativistic equations. A goal of this paper is to suggest some relativistic models and 
to give methods of their solving for heavy atoms. Some efforts will be made for obtaining 
asymptotical properties of wave functions and spectra of many-electron stationary systems. 

1. RELATIVISTIC EQUATION SYSTEM IN COORDINATE  
SPACE OF PARTICLES 

Classical energy for a system of free particles may be written as follows 
 

  (1.1) 

 
We may consider this expression like a root of some eigenvalue problem. For a system of 

non-interacting particles (electrons) this root is a sum of eigenvalues belonging to Dirac 
equations, or another one-particle relativistic equation system, for example, those in 
quaternionic representation. We use the both possibilities in our paper. 

The main relation in relativistic physics connects energy and momentum with taking into 
account the twofold degeneracy by spin 

 

.  (1.2) 

 
The one-particle Dirac system of four equations may be written as follows 
 

  (1.3) 

 
The kinematic matrix differs from the original Dirac one up to an orthogonal 

transformation of spinor components, but Eq. (1.3) is more convenient for deriving spin-
relativistic members to non-relativistic expression for the particle energy. (We do not face 
fractions with singular denominators in the variable r, when a Coulombic potential is 
included.) Eq. (1.3) has four roots, of which two are negative and has no physical sense, 
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however the eigenvalue spectrum proves to be unlimited and there does not exist a lower limit 
to formulate a variational principle for the Dirac equation directly. This is one of the 
difficulties in numerical analysis of the relativistic equations for many-particle systems in 
quantum mechanics. 

2. FOURIER-TRANSFORMATION TO MOMENTUM  
SPACE OF PARTICLES  

The particle coordinates and momentum are conjugate variables in quantum mechanics. 
A transfer to the momentum representation for the wave equation can be made by the Fourier-
transformation of the wave function and operators. One has  

 

.  (2.1) 

 
The Coulomb potential is transformed by the formula 
 

.  (2.2) 

 
The inverse Fourier-transformation of the Coulomb potential is calculated as follows 
 

.  (2.3) 

 
The convolution theorem allows one to calculate the Fourier-transformation of the two 

functions product 
 

,  (2.4) 

 
where  

 

.  (2.5) 

 
A proof of the formulae given can be made using the properties of the Dirac δ-function 
 

.  (2.6) 

 
The Fourier-transformation of the Dirac equation converts the momentum into a c-

number, while the product of the potential function and a bispinor turns into an integral in 
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which the first one becomes the kernel of the equation integral operator. Write down the 
integral Dirac equation for hydrogen atom (the proton is considered fixed). 

 

  (2.7) 

 
Here the product of the potential function and the bispinor ought to understand like the 

integral expression 
 

 

 (2.8) 

 
An analogous Fourier-transformation allows one to write down in the momentum space 

many-particle relativistic equations, which will be given below. 

3. EIGENVECTORS OF THE DIRAC KINEMATIC MATRIX 
IN THE MOMENTUM SPACE 

The relationship (1.2) can be considered as a determinant of an eigenvalue problem with 
the Dirac matrix B and a column-function  with 4 components 

 

,  (3.1) 

 
where the matrix B is as follows 

 

,  (3.2) 

 
with the momentum cyclic components. One can easily verify that the decision problem 
condition for the homogeneous equation (3.1) 
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components in the matrix given are c-numbers, then the column-function  represents a 
set of four numbers, which are expressed via the B matrix elements. 

Introduce a vector matrix (Clifford unit vector)  
 

,  (3.4) 

 
where the matrix elements are cyclic unit vectors of the Cartesian coordinate system, 

, and briefly n–=nx – iny, n+=nx + iny. Then the matrix (3.4) may be written 
concisely as  

 

,  (3.5) 

 
or in the basis of Pauli matrices 

 
.  (3.6) 

 
The matrix B may be written like a block matrix of the order 2 
 

,  (3.7) 

 

where , and the momentum is given in the Clifford algebra. 

To diagonalize the matrix B one may notice that the blocks along the main diagonal are 
proportional to the unit matrix of the order 2, therefore they are invariable, if one diagonalizes 
first the momentum blocks, which are Hermite matrices, 
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,  (3.10) 
 

where the cross indicates the Hermite conjugation of the eigenvector unitary matrix С1. 
Solving the matrix equation , one obtains the eigenvector matrix sought for 

 

.  (3.11) 

 
Transformation 
 

 
 (3.12) 

 
brings the matrix П, as has been said earlier, into the diagonal form without changing the 
diagonal blocks in (3.7). As a result the matrix B has been transformed to a simpler form with 
a more number of zero elements 

 

.  (3.13) 

 
Besides the zeros are arranged in the chess order, so the permutation of the 2nd and 3rd 

rows and columns of the matrix given by the matrix 
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brings the matrix B into a block-diagonal form 
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with the blocks of like structures. Usage of the orthogonal transformation 
 

,  (3.15а) 

 
where the matrix I2 is the diagonal unit matrix of the order two, F2 is the diagonal of the form 

 

,  (3.15b) 

 
brings the matrix (3.15) into the matrix with identical blocks, which are diagonalized by the 
same orthogonal matrix С2 of a general form 

 

.  (3.16) 

 
The eigenvalues of the block matrices (3.15) are as follows 
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For the angle  a relationship  takes place, from which one finds, using the 

known relationship , the parameter  
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Thus, the elements of the orthogonal matrix (3.16) are calculated as follows  
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,  (3.20) 

 
where the orthogonal matrix U2 is as follows 
 

.  (3.21) 

 
Consider the first column of the eigenvector matrix for the matrix B. One has got the 

normalized to 1 eigenspinor 
 

.  (3.22) 

 
Denoting the matrix elements in (3.11) by с11, с12. с21, с22, sine and cosine in the matrix 

(3.16) by s and c, write down an explicit form of the normalized eigenvectors matrix for the 
matrix B 
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be expressed via the angle variables θ, φ, which define a direction of the particle momentum 
vector 

 

.  (3.24) 

 
Thus, the nonrelativistic bispinor is of the form 
 

.  (3.25) 

 
Analogously we obtain another columns for the nonrelativistic bispinors of which only 

one has a physical meaning and corresponds to the positive eigenvalue of the matrix B. The 
eigenvectors (3.23) will be used below. 
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TO AN INTEGRAL FORM  

A solution of the integral Dirac equation is given in [1]. Here we suggest a general 
method of transformation the relativistic equations to a convenient integral form for their 
analysis. Make use the following theorem from the matrix theory. A Hermitean matrix A can 
be written down like the spectral resolution over eigenvectors сk as follows 
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  (4.3) 

 
The eigenvectors сk are given by the formulae (3.22), (3.23). The eigenvalues of the 

Dirac equation matrix are equal to (m is the electron rest mass) 
 

  (4.4) 

 
Multiply the Eq. (4.2) to the left by the vector row , and take into account the notation 

(4.3) and the orthogonality of the Dirac matrix eigenvectors. Then we arrive at a scalar 
equation relative to the function φ1(p) 

 

  (4.5) 

 
The scalar product of the vector-row and vector-column  under the integral 

is a scalar function depending on the two vector arguments p and p′, therefore one ought to 
transform this product to the scalar functions . Note that the unit matrix of the order 4 

can be represented like the decomposition over eigenvectors ck of the matrix (3.23). One has 
got 
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The nonrelativistic approximation takes place, provided low electron momentum as 
compared with mc, then the eigenvectors ck become unit and the scalar function  

remains only in the integral equation (4.7). Representing the radical as a series in  and 

restricting in the latter two first terms, with denoting , one arrives at the 
Schrödinger integral equation for an electron in the hydrogen atom 

 

  (4.8) 

 
Solving this equation allows one to make manifest O(4) symmetry of the Coulombic 

problem in wave mechanics of the hydrogen atom, established in the classical Kepler problem 
[4,5]. In the next section a solution of that integral equation will be obtained with the help of 
4-fold spherical harmonics. 
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.  (5.4) 

 
Express the distance square between points  and  in terms of , making use 

the relation (5.2). One has got 
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.  (5.10) 

 
The volume element acquires the form in hyperspherical coordinates as follows 
 

.  (5.11) 
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one obtains 
 

,  (5.19) 

 
that coincides with the denominator of the function under the integral in Eq. (5.15) 
Write down the Laplace equation in  
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,  (5.25) 

 
where  is a Gegenbauer polynomial,  is a real number. 

Take into account the addition theorem [3] for the Gegenbauer polynomials 
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Substitute this expansion into the Fock equation, then multiply the both parts of the 

equation by a complex conjugated hyperspherical function and integrate over 4-sphere 
surface, provided the hyperspherical harmonics orthonormality, 

 

,  (5.28) 

 
where  is the Kronecker symbol. As a result we obtain for the parameter  the 
following value 

 
.  (5.29) 

 
The hydrogen atomic spectrum is calculated by the formula 
 

.  (5.30) 

 
Thus, the problem on the discrete spectrum of the hydrogen atom has been solved 

completely. 
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The hydrogen atomic continuous spectrum is characterized by the positive parameter ε to 
which the harmonics on the both surfaces of a two-sheeted hyperboloid correspond. 

6. A REMARK ON SOLVING THE RELATIVISTIC INTEGRAL EQUATION 
SYSTEM IN MOMENTUM SPACE 

Consider the relativistic equation system for a hydrogen-like atom 
 

, (i=1,…,4).  (6.1) 
 
Taking into account the factorization of the function  by the variables, one 

can reduce the problem to solving the integral equation with a degenerate kernel and thus to a 
system of linear algebraic equations with a Hermite matrix of coefficients. A diagonalization 
of this matrix will come up with a solution of the initial equation, because coefficients in a 
series over the basic functions of the kernel bilinear decomposition will be found. It is clear 
that due to the spherical symmetry of the problem, the coefficient matrix in the equation 
system will acquire a block-diagonal form with finite block orders.  

In addition, one can consider an approximate scalar equation for the first component φ1 
that corresponds to the spinor function with the predominant first component of the bispinor 
for the positive energy value 

 

  (6.2) 

 
This equation is an augmented one with respect to zero-spin integral equation when the 

bilinear kernel function becomes constant. In the equation given a modification of the 
Coulombic potential takes place in accordance with the relativistic kinematics by multiplying 
it into the bilinear by momenta function, which is formed of the kinematic matrix 
eigenvectors 

 

 

 
. (6.3) 

 
The bilinear form components are given by the formula (3.22). One can see that while 

neglecting the “positron” components с13 and с14, we obtain the relativistic integral equation 
of the first order in energy with the spinor constituent unlike the second order in energy 
Klein-Gordon equation. 
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7. RELATIVISTIC EQUATIONS FOR A MANY-ELECTRON  
SYSTEM IN THE MOMENTUM SPACE 

Some advantages of integral equations for a system of relativistic electrons are perceived 
while solving problems of electron scattering on atomic systems, the more so as in such 
experiments electron momenta are measured. At the same time, as we have verified in 
researching the Dirac equation, in the momentum space one can easily pass to the 
nonrelativistic model of particle mechanics and obtain the relativistic corrections in an 
explicit form. 

Write down the system of relativistic equations for an atom 
 

,  (7.1) 

 

,  (7.2) 

 
where the index q points to the momentum being the differential operator. 

Multiply this system to the left by the exponential 
 

,  (7.3) 

 
with the momentum being a c-number, and integrate the equations over electron coordinates, 
we arrive at the integral equation system 

 

  (7.4) 

 
Here the kinematic matrix in the direct product consists of the c-numbers 
 

, (7.2a) 

 
with the matrix I being of the order 4n. Represent the coordinate wave function (multispinor) 
under the integral as a Fourier-transformation, also, 
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.  (7.5) 

 
Changing the order of integration by the coordinates and momenta in the system (5.4), 

and defining the Fourier-transformation for the potential function 
 

,  (7.6) 

 
one obtains an integral equation system 

 

.  (7.7) 

 
The kinematic matrix in the left hand side of the equation can be represented as the 

spectral resolution into its eigenvectors 
 

,  (7.8) 

 

where , and , being dictated by the 

appropriate eigenvector. A real state of a particle is described by the arithmetic root. The 
length of the eigenvector is 4n. However, as it has been demonstrated with the Dirac equation, 
in the transformation discussed all the roots of the matrix (7.8) participate.  

By virtue of great multiplicity of the eigen-numbers (it may compare with composition of 
spins in atomic one-particle models) one obtains 2n eigenvectors for the same eigenvalue as 
the arithmetic root. So this root gives the reasonable estimation for the electron system energy 
in an atom. All the rest roots in which negative radicals enter, have no physical meaning, and 
they ought to be considered only like auxiliary algebraic constituents, when linearizing the 
kinetic energy operator of a particles system. 

The Eq. (7.7) can be transformed to a new form, taking into account the relationship 
(7.8). Thus, in analogy with the Dirac equation, multiply it to the left by the row eigenvector 

 and using the orthonormality of the kinetic matrix eigenvectors, we arrive at the many-

particle relativistic integral equation over functions . 
 

,  (7.9) 

( )
( )

( ) 3
3 /2

1

1 exp
2

n
n

k kn
k

i d
π =

 ′ ′ ′Ψ = Φ 
 
∑∫r p r p p

( )
( )

3
3

1 1 1 1

1, exp exp
2

n n n n
n

k k a ab k kn
k a a b k

V i V V i d
π

′ ′
′= = > = =

    ′ ′= − +    
    
∑ ∑ ∑ ∑∫p p p r p r r

( ) ( ) ( ) ( )3
4 a 4

1
I ×…×B ×…×I , I =

n
n

a
V d E

=

′ ′ ′⋅Φ + ⋅ ⋅Φ Φ∑ ∫p p p p p p

4

4 a 4
1 1
I ×…×B ×…×I

nn

v v v
a v

λ∗

= =

=∑ ∑c c

( ) ( ), 2 4 2 2

1
1

n
l v a

v a
a

m c c pλ
=

= − +∑ ( ), 1 or 2l a v =

1с

kχ

( ) ( ) ( ) ( ) ( ) ( )
4

3
1 1 1 1

1
, =

n

n
k k

k
V d Eλ χ χ χ∗

=

′ ′ ′ ′+ ⋅ ⋅∑∫p p p с p c p p p p



A Theory of Heavy Atoms 423 

where . The rest 4n-1 integral equations of the system have 

analogous forms. Each eigenvector can be written down in an explicit form, so an analysis of 
the kernel of the integral operator, cumbersome by the necessity, can be made easily. As it 
may be seen, the kernel is factorized with respect to the function-components of the 
eigenvectors. Reduction of the kernel to a degenerate one amounts to a factorization of the 
potential function by variables. This question demands a separate consideration. Note a 
property of the integral operator (7.9). It is obvious, the Coulombic function of the kernel has 
the singularity when . The multiplier which includes the eigenvectors of the kinematic 
matrix, is represented by the sum in which the first adduct is reduced to unity, and the other 
terms vanish because of eigenvector orthogonality, provided the momenta are equal. If the 
momentum is changed like the argument of an eigenvector, the latter is rotated in many-
dimensional vector space relative to the other eigenvectors with some other argument, so the 
scalar products with them of the eigenvector c1 mean cosines of the angles among those 
vectors, values of which are close to zero. In particular this note concerns the eigenvectors 
which belong to roots with nonphysical negative energies.  

Thus, the leading term in this kernel multiplier proves to be that which index coincides 
with the index of the function outside of the integral operator. Besides, the Coulombic part of 
the integral operator kernel is singular, when the momenta are equal, and it defines the 
asymptotic behavior of the solution. In this case the first term of the scalar products of the 
kinetic matrix eigenvectors only affects the wave function asymptotic, which is unity at equal 
arguments in the potential function, the rest scalar products are equal to zero due to the 
eigenvector orthogonality in this domain. Therefore one has a reason to solve first the scalar 
relativistic equation 

 

.  (7.10) 

 
This equation can be solved by an iteration method choosing trial function from the 

decomposition of the potential function and components of the eigenvector c1(p). A 
factorization of the Coulombic kernel  by variables brings to an integral equation 

with a degenerated kernel which solution can be obtained by an algebraic method. After 
calculation of the wave function in the momentum space, a transfer to the electronic 
coordinate space is made by the formula (7.5). 

The eigenvectors corresponding to nonphysical roots of the Dirac equation (which they 
assign conventionally to positron states) contribute just as algebraic elements of the 
relativistic model considered similarly the connection of real and complex roots of a 
polynomial with real coefficients. The prediction of the positron existence is truly connected 
not with the Dirac equation algebra, but with sign symmetry of the elementary electric 
charges, which kinetic energy undoubtedly does not depend on an electric charge sign. 

The Eq. (7.10) changes to the nonrelativistic Schrödinger equation for an atom if particle 
momenta are much lower than mc, then the eigenvector c1 has zero “positronic” components 
like in (3.25). 
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8. A HYPERCOMPLEX REPRESENTATION IN THE MOMENTUM  
SPACE OF PARTICLES 

The above-developed theory of relativistic equations for a heavy atom can be expanded 
to a hypercomplex variant of equations. We start from the equation system for an n-electron 
atom 

 
  (8.1) 

 
where 

 
  (8.2) 

 
With the kinematic matrices for separate particles 
 

,  (8.3) 

 
and the momentum written in the quaternionic form 
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with the Hamilton algebra , , and  commuting with 

the Hamilton units, . 
The atomic potential function is of the form (in the relativistic atomic scale) 
 

,  (8.5) 

 
Write down the spectral resolution of the kinematic matrix (8.2) 
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In the momentum representation Eq. (8.1) is the integral equation 
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where the potential function is expressed in the momentum space and defined with the help of 
the Fourier transformation of the corresponding potential function in the coordinate 
representation. 

Multiplying this equation to the left successively by the eigenvectors of the kinematic 
matrix, one obtains equations with respect to projections of the multispinors onto those 
vectors. One has got 

 

,  (8.8) 

 
where . For the following transformation of the equation, introduce 

the unit matrix of the order 2n, and its spectral decomposition 
 

,  (8.9) 

 
Substituting it into the integral (8.8), one arrives at the equation system sought for the 

functions 
 

 

,  (8.10) 

 
by an analogy with the system given in the preceding Section. We can make the analogous 
conclusions concerning applications of this relativistic equation system in the theory of heavy 
elements. 

The distinctive feature of the hypercomplex equation system, as compared with the 
considered in the Clifford space, is that among the eigenvectors of kinematic matrix there 
exists only one corresponding to the sum of the positive roots of the quadratic equation for the 
free particle energy. So, the equation with the index 1 is determining one, while solving the 
physical problem on motion of n particles (electrons) near a force center. This equation can 
give the first approximation for the wave function of an atomic system. (It is possible a 
generalization of such an equation on molecular systems, also, but not in the context of this 
research.) This equation gives the correct asymptotic solution of the initial equation system, 
with a singular kernel of the integral operator, also. Write down the abovementioned scalar 
relativistic equation 

 

,  (8.11) 

 
where the scalar product of the multidimensional eigenvectors (spinors) of the kinematic 
matrix models an influence of the spin kinematic of the particle system on their interactions 
by means of the Coulombic forces with the force center and between particles. 
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CONCLUSION 

It stands to reason that advantages and deficiencies of the approaches given can be 
estimated in numerical realizations. We hope that the simple structure of the investigated 
equations will allow in the future to create mathematical software for posing and solving of 
some actual problems in atomic spectroscopy and atomic physics of heavy and superheavy 
chemical elements. 
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